Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 382(6668): 306-310, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37856593

RESUMO

The snow crab is an iconic species in the Bering Sea that supports an economically important fishery and undergoes extensive monitoring and management. Since 2018, more than 10 billion snow crab have disappeared from the eastern Bering Sea, and the population collapsed to historical lows in 2021. We link this collapse to a marine heatwave in the eastern Bering Sea during 2018 and 2019. Calculated caloric requirements, reduced spatial distribution, and observed body conditions suggest that starvation played a role in the collapse. The mortality event appears to be one of the largest reported losses of motile marine macrofauna to marine heatwaves globally.


Assuntos
Braquiúros , Pesqueiros , Animais , Oceanos e Mares , Oceano Pacífico , População
2.
Proc Natl Acad Sci U S A ; 117(4): 2218-2224, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31932439

RESUMO

Marine fish stocks are an important part of the world food system and are particularly important for many of the poorest people of the world. Most existing analyses suggest overfishing is increasing, and there is widespread concern that fish stocks are decreasing throughout most of the world. We assembled trends in abundance and harvest rate of stocks that are scientifically assessed, constituting half of the reported global marine fish catch. For these stocks, on average, abundance is increasing and is at proposed target levels. Compared with regions that are intensively managed, regions with less-developed fisheries management have, on average, 3-fold greater harvest rates and half the abundance as assessed stocks. Available evidence suggests that the regions without assessments of abundance have little fisheries management, and stocks are in poor shape. Increased application of area-appropriate fisheries science recommendations and management tools are still needed for sustaining fisheries in places where they are lacking.


Assuntos
Conservação dos Recursos Naturais , Pesqueiros , Peixes/crescimento & desenvolvimento , Animais , Biomassa , Abastecimento de Alimentos , Humanos
3.
Proc Natl Acad Sci U S A ; 114(4): 717-721, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28028218

RESUMO

Indiscriminate and intense fishing has occurred in many marine ecosystems around the world. Although this practice may have negative effects on biodiversity and populations of individual species, it may also increase total fishery productivity by removing predatory fish. We examine the potential for this phenomenon to explain the high reported wild catches in the East China Sea-one of the most productive ecosystems in the world that has also had its catch reporting accuracy and fishery management questioned. We show that reported catches can be approximated using an ecosystem model that allows for trophic cascades (i.e., the depletion of predators and consequent increases in production of their prey). This would be the world's largest known example of marine ecosystem "engineering" and suggests that trade-offs between conservation and food production exist. We project that fishing practices could be modified to increase total catches, revenue, and biomass in the East China Sea, but single-species management would decrease both catches and revenue by reversing the trophic cascades. Our results suggest that implementing single-species management in currently lightly managed and highly exploited multispecies fisheries (which account for a large fraction of global fish catch) may result in decreases in global catch. Efforts to reform management in these fisheries will need to consider system wide impacts of changes in management, rather than focusing only on individual species.


Assuntos
Conservação dos Recursos Naturais/estatística & dados numéricos , Pesqueiros/estatística & dados numéricos , Animais , Biodiversidade , Biomassa , China , Ecossistema , Peixes , Cadeia Alimentar , Modelos Biológicos , Comportamento Predatório/fisiologia
4.
Proc Natl Acad Sci U S A ; 113(18): 5125-9, 2016 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-27035953

RESUMO

Data from 4,713 fisheries worldwide, representing 78% of global reported fish catch, are analyzed to estimate the status, trends, and benefits of alternative approaches to recovering depleted fisheries. For each fishery, we estimate current biological status and forecast the impacts of contrasting management regimes on catch, profit, and biomass of fish in the sea. We estimate unique recovery targets and trajectories for each fishery, calculate the year-by-year effects of alternative recovery approaches, and model how alternative institutional reforms affect recovery outcomes. Current status is highly heterogeneous-the median fishery is in poor health (overfished, with further overfishing occurring), although 32% of fisheries are in good biological, although not necessarily economic, condition. Our business-as-usual scenario projects further divergence and continued collapse for many of the world's fisheries. Applying sound management reforms to global fisheries in our dataset could generate annual increases exceeding 16 million metric tons (MMT) in catch, $53 billion in profit, and 619 MMT in biomass relative to business as usual. We also find that, with appropriate reforms, recovery can happen quickly, with the median fishery taking under 10 y to reach recovery targets. Our results show that commonsense reforms to fishery management would dramatically improve overall fish abundance while increasing food security and profits.


Assuntos
Conservação dos Recursos Naturais , Pesqueiros/economia , Animais , Biomassa , Peixes , Abastecimento de Alimentos , Humanos
6.
Proc Natl Acad Sci U S A ; 112(26): E3314-5, 2015 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-26048908
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...